Укр|Eng|Рус
Ukraine
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison headphones

Save List
Add to comparison
Sony NW-WS413 4Gb
Sony NW-WS413 4Gb
Compare prices 11
User reviews
TOP sellers
Main
The format of the headphones with the player. Full waterproof. Ambient sound mode.
Connection and design
Featuresfor active sports
Design
in-ear
Connection typewireless
Specs
Soundstereo
Frequency range20 – 20000 Hz
Emitter typedynamic
Features
Volume control
Codec support
AAC
Built-in memory4 GB
Power supply
Power sourcebattery
Charging time1.5 h
Operating time (music)12 h
Charging portmicroUSB
General
WaterproofIP65
Weight32 g
In box
silicone tips
Color
Added to E-Catalogapril 2016

Features

This parameter is indicated only for specialized models that are not related to “ears” for general use. Nowadays, in headphones you can find the following specialization options: gaming, for active sports, office, monitor(aka studio), for DJs, for sleep. Here is a more detailed description of these varieties:

- Gaming. Headphones designed primarily for use in games - primarily with PCs and laptops (a separate type is available for consoles, see below for details). Externally they stand out primarily due to their design - usually quite bright and aggressive. Most of these models have an overhead design, most often in a full-size “Over Ear” format (see “Design”) - this provides maximum immersion into the gaming. There are other design options, but much less common. An almost mandatory part is a microphone - for voice communication in online games. In addition, most multi-channel models fall into this category (see “Sound”) - such sound is most important for games.

— For active sports. Headphones good for sports. Such devices must, firstly, have additional fixation in the ears or on the head so as not to change their position during active movements; secondly, don’t be afraid of sweat (and ideally, ra...in, snow and other precipitation). With rare exceptions, headphones for active sports do not have a wire that could create inconvenience when moving. Sports headphones include earbuds models, earbuds, and some on-ear headphones. The key character traits they share are a secure fit and at least some degree of IP water resistance (see "Ingress Protection (IP)").

- Office. Office headphones are designed for consultants, support operators and other employees who constantly have to deal with voice communications over the phone or the Internet. Accordingly, one of the main features in such models is the presence of a microphone. Also among office headphones, models for one ear are very popular (see “Sound - mono”), which allow you to hear both the interlocutor on the line and the surrounding environment at the same time. Many “ears” for this purpose use a USB connection (see “Connection”) - in the expectation that inexpensive office computers may not have specialized audio outputs at all. In this case, a small control panel for working with IP telephony can be provided directly on the USB plug; it allows, in particular, to accept and reject calls. There are also wireless models (usually with a connection via a radio channel, less often via Bluetooth), as well as specialized solutions connected to telephone sets using specific connectors.

— Monitor (studio). Headphones designed for use in professional sound recording and when setting up audio equipment. They are made only wired. However, the key feature of such models is different: they have the most even frequency response, which gives almost the same sound volume in all frequency bands, and a wide operating range, often exceeding the limits of frequencies audible to humans. Thanks to this, headphones for this purpose are able to clearly identify all the flaws in the sound signal - including nuances that are not noticeable on traditional “ears”; Such capabilities are indispensable in professional work with sound. On the other hand, for the same reason, there is no point in using monitor models for everyday listening to music: they not only reveal various shortcomings of the recording, but also give the sound a specific coloring that is unusual and even unpleasant for the average user.

- For DJ. Headphones originally intended for use by professional DJs when mixing tracks. In many ways they are similar to the monitor ones described above - in particular, they have a very smooth frequency response, providing the most reliable sound, and a wide frequency range. In addition, DJ headphones are usually made in a closed acoustic design and generally have high quality sound insulation, which allows you to maintain good audibility even in quite noisy environments.

- For sleep. Miniature headphones of a special anatomical shape, which allows you to calmly fall asleep lying on your side without discomfort in the ear. To reduce ambient noise levels, they are usually designed with passive noise reduction. These headphones can be used both for listening to music and for broadcasting white noise, nature sounds or waves. Advanced models also monitor sleep quality, and the alarm function turns on a wake-up melody at the appointed time. Such headphones are often called electronic earplugs.

Design

In this paragraph, first of all, the method of mount on the ears is specified; according to this parameter, modern headphones are divided into overhead, earbuds, in- ear, glasses and headbands. For on-ear models, the acoustic design (closed, semi-open, open) can also be specified here, as well as the presence of such features as a full-dimensions (over-ear) design (in the absence of this feature, such headphones are called “on-ear”, or simply on-ears), swivel earcups, auto-adjust headband, or even the mid-2021 trend, Cat Ears. And details such as a rigid headband, behind-the- ear mount, mount on the neck and the ability to fold can be combined with almost any method of placement on the ears (with a few exceptions - for example, on-ear models are not attached to the neck).

Here is a more detailed description of the different ear placement options:

- Overhead. Overhead headphones are called headphones that are located outside the auricles, covering the ear from the side (“regular” overhead models) or completely (full-sized Over-Ear - see below about them)....In any case, such models are quite large in dimensions. This, on the one hand, simplifies the creation of headphones with advanced sound characteristics, and also allows you to apply some specific tricks without much difficulty - for example, several emitters or support for multi-channel surround sound. On the other hand, the dimensions of the "ears" complicate the transportation and use on the go. In addition, it is worth considering that most overhead models have a headband, which is why they are poorly compatible with complex hairstyles and some headdresses. Models with rigid temples and behind-the-ear fasteners do not have this disadvantage, but they also have their own specifics (see below).
On-ear headphones can have different acoustic design:
  • Closed. Models with a high degree of sound insulation, protecting the user from extraneous sounds as much as possible. This design contributes to a rich sound (especially in the bass range) as well as a very powerful immersion effect, making it well suited for home use (including computer games) and noisy environments. But it is not recommended to use such “ears” on the street: complete isolation from surrounding sounds in such conditions can be unsafe. In addition, it is believed that a completely closed design slightly degrades the sound fidelity.
  • Open. Headphones with a minimum level of sound isolation, allowing most of the external sounds to pass through. They are inferior to closed ones in terms of power and saturation of sound, as well as efficiency in noisy environments; in addition, the sound from such headphones is well audible to others. On the other hand, open models generally provide more authentic sound and are better suited for situations where you need to control your surroundings, such as outdoor applications.
  • Semi-open. A kind of compromise between the options described above: headphones with better sound insulation than in open models, but still not up to closed “ears” in this indicator. For some users, this middle option may turn out to be more comfortable. In addition, semi-open headphones are also appreciated in professional work with sound: they retain the richness of the bass and at the same time do not create the distortion typical of a completely closed design.
  • With rigid shackle. Rigid headband allows you to securely fix the ear pads on the ears. A close analogue of the rigid headband is the headband of full-dimensions headphones, but in contrast to it, the headband is worn on the back of the head, and not on the top of the head. For this reason, hard temples are made mostly without padding, from bare plastic/metal. Headphones with a rigid headband most often have a sports focus, because the headphones, located on the back of the head, will not fidget on the head even with intense running. On-ear headphones are pressed tightly against the auricles, but the speakers themselves are placed on the outside of the auditory canals.
  • Cat Ear ("ears"). On-ear headphones in an interesting design - with an imitation of cat ears on the headband. Such an addition does not affect performance, however, the "ears" look unusual and can be a great addition to the bright, original style of the owner. Cat Ear headphones are especially popular among teenagers.
- Intrachannel. Tiny earphones that, when used, are inserted directly into the ear canals. For ease of wearing, rubber or silicone pads are provided, often several of these pads are included in the kit to adjust to a specific ear dimensions. This design combines compactness and advanced performance: earbuds “ears” are often comparable to overhead ones in terms of sound volume and bass saturation, and the degree of sound insulation is very high (many models can even be used as impromptu earplugs). On the other hand, complete isolation from external sounds can sometimes be a disadvantage - for example, when cycling or walking along a busy street.

- Intracanal with a rigid shackle. In-ear headphones are laid inside the auditory canals, which allows them to be fixed as securely as possible in the ear and not fall off. The presence of a rigid bow further increases the reliability of fixing the headphones. This type of headphone is well suited for sports. The rigid headband and earbuds design of the sound emitters keep the earbuds securely in place even during intense running.

- Inserts. Also known colloquially as "pills". Similar to earbuds headphones, these headphones are small in dimensions and are placed in the auricle - however, not in the depth of the auditory canal, but at its very beginning, almost outside. This makes the earbuds somewhat simpler in design and cheaper, but it is more difficult to achieve rich sound and advanced acoustic characteristics in them. Such models give a rather low sound insulation, but this can be both a disadvantage and an advantage, depending on the situation. And some headphones of this type have an elongated shape, due to which they sit deeper in the ears and, in terms of their capabilities, can approach earbuds models.

Separately, it is worth noting that earbuds models and earbuds do not use headbands - the headphones are either completely separate or connected with a device such as a rigid headband or neck mount. So these headphones can be worn with almost any hairstyle or headdress without any problems.

— Inserts with a rigid headband. The earbuds are simply inserted into the passage of the auditory canal without penetrating deeply into it. This is not the most reliable way to fix the headphones, but due to the presence of a rigid headband, the earbuds gain a firm fit and a secure fit. The headphones themselves have an open sound path design, and therefore reproduce audio with a noticeable distortion of the original sound signal. But at the same time, the open acoustics scheme allows you to clearly hear what is happening in the surrounding space.

As for additional design features, they can be as follows:

- Full-dimensions Over-Ear. On-ear headphones (see above) in which each cup completely covers the ear and fits snugly to the head. The cups themselves in such models are made quite large and are equipped with characteristic soft "borders" around the perimeter of the inner side - these borders are adjacent to the head, so that the auricle is actually inside the cup. The main advantage of this design is that the headphones (with the right dimensions) practically do not touch the user's ears and do not put pressure on them - this is especially comfortable during prolonged use. In addition, it is easier to achieve high-quality sound insulation in Over-Ear models (although among them it is quite possible to find models with semi-open and even completely open acoustic design). The main disadvantage of such devices is bulkiness and inconvenience in transportation and use on the go. In addition, when wearing glasses, the Over-Ear cups usually press on the temples from the sides, which can cause discomfort.

- Auto headband adjustment. A headband that can automatically adjust to the dimensions of the user's head. Such a headband usually consists of two parts - a rigid, usually metal, base, and a soft inner part, which is adjacent directly to the head. It is the inner part that is able to stretch, and the user only needs to place the cups on the ears so that it is comfortable - and the headband itself will increase to the desired dimensions.

- Rigid bow. A shackle made of rigid material that connects both headphones and is located on the back of the head when worn; in some models it can also serve as a neck mount (see below). The advantage of such a device over the classic headband is that the bow can be used with almost any hairstyle and headgear. On the other hand, in earbuds models and earbuds (see above), this feature makes the headphones more bulky, and in over-ear models it makes sense to use it only with conventional models that are not related to full-dimensions Over Ear. Therefore, as well as for a number of other reasons, in our time the bow is not particularly popular.

- Ear mount. Attachment that allows you to fix each earpiece directly on the ear; as a rule, it has the appearance of a characteristic bow. This feature is found in all types of modern "ears", except for Over Ear (see above), and its specific meaning depends primarily on the main way the earpiece is placed on the ear. So, for earbuds models and earbuds, the behind-the-ear mount provides additional reliability of retention: the likelihood that the earpiece will fall out of the ear is reduced to almost zero due to such a retainer. In overhead "ears" this feature is much less common, and its main idea is to do without a headband or a rigid headband - in some cases, these design elements are redundant.

- Attachment to the neck. A feature that is found exclusively in wireless and combined models (see "Connection type") - and only earbuds and earbuds (see above). Both headphones in such models are connected to each other either with a regular wire with a thickened part, or with a special horseshoe-shaped hoop (a separate “ear” is connected to each end of such a hoop with a wire). In any case, when worn, such a wire or hoop is located at the back of the user's neck, which provides additional convenience: headphones removed from the ears (or dropped out) do not fall to the ground, but remain hanging on the mount. And in some models, special magnets are also provided, with which you can “stick” the headphones taken out of your ears to each other, turning the entire structure into a ring - this further reduces the risk of dropping the device.

- Possibility of folding. The earphones can be folded compactly for storage and transport. Note that this feature is indicated only for overhead models (see above) - earbuds headphones and earbuds are quite portable in themselves, there is no need to provide a special folding design for them.

- Swivel bowls. A design feature found in over-ear headphones (see above). Rotary in this case means bowls that, in the working position, can be rotated at a certain angle around the vertical axis. This allows the headphones to further adapt to the dimensions and shape of the user's head - which, in turn, increases comfort, especially when worn for a long time. On the other hand, the swivel mount somewhat complicates the design of the headphones, increases its cost and somewhat reduces reliability.

- Glasses. Headphones in the form factor of glasses. The sound of such models is transmitted either by directional speakers built into the temples, or directly to the inner ear by conduction through the bones of the skull. In addition to music, bone conduction glasses provide audibility of what is happening around.

- Headband. Headbands with built-in earphones. In a similar format, children's's models of headbands with bright prints of cartoon characters and fairy-tale characters are produced, as well as headbands for fans of a sports lifestyle. Headphones in such models are usually made removable, which allows you to wash the headband.

Connection type

Wired. Headphones connected to the signal source with a cable. Such a connection is highly reliable and noise immunity, gives a minimum of distortion; the headphones themselves turn out to be simple, relatively inexpensive, light, moreover, they do not require their own power supply and have an unlimited operating time. The main disadvantage of this option is the presence of a wire, which limits the range and can create various inconveniences.

Wireless. Headphones using a Bluetooth, radio, or infrared connection. The most obvious advantage of such models is the absence of a wire, which makes them very convenient to use; and the range is usually at least a few metres. On the other hand, wireless models are noticeably more expensive than wired counterparts, they have a limited operating time and require periodic recharging, and it is more difficult to achieve high sound quality in such devices (there are special technologies like aptX, but they increase the cost even more). In addition, traditional wireless headphones are also heavier and bulkier than wired ones; these shortcomings are devoid of true wireless models, but they have their own nuances.

Combined. Headphones that allow both of the ab...ove connection options. The most popular type of such "ears" are wireless models with a detachable cable(see the relevant paragraph); another option is wired headphones with a standard plug, equipped with an adapter for wireless connection. Anyway, having such a model, the user can choose the connection method at his discretion: for example, you can listen to music from a computer via a wire, and when you leave the house, connect your “ears” to your smartphone via Bluetooth. At the same time, the combined devices are not afraid of a dead battery: you can simply switch the “ears” to the cable and continue to use them. The main disadvantage of this type of headphones is the rather high cost.

Sound

The audio format supported by the headphones.

— Stereo. Two-channel sound that allows you to create a surround sound effect to a certain extent (due to the difference in the right and left channels). The design of the headphones (two speakers, one for each ear) was originally “sharpened” specifically for stereo, so the vast majority of models support this particular sound format.

— Mono. Single-channel sound that does not create a surround effect. This marking means that this model is equipped with one earpiece ; At the same time, there are two types of such devices on the market. The first is headphones that initially have only one cup and are designed for situations where the second ear needs to be left open (for example, to work on the phone in the office). The second is true wireless devices (see Cable Type), sold singly to replace a lost earphone from the original pair.

— 5.1. Originally, 5.1 was designed to create surround sound that can come from any direction ("surround"). It assumes the presence of 5 main channels (centre, front left / right, rear left / right) and one bass. In headphones, the effect of this sound is achieved through the use of several speakers in each cup. Such models are very convenient when watching movies with multi-channel sound, as well as in games — they provide a powerful immersive effect. On the other hand, such headphones are not cheap, and besides, they require a spec...ific connection method (for example, via USB).

— 5.1 (virtual). Models with support for 5.1 surround sound (see above), in which the surround effect is achieved not due to the number of speakers, but due to special sound processing technologies. This somewhat reduces the accuracy compared to the "non-virtual" multi-channel, but it can significantly reduce the cost and weight of the headphones. However, there can also be several speakers in such models — for example, for separation by frequency.

— 7.1. The 7.1 format is the multi-channel 5.1 described above, supplemented by two more main channels. The localization of these channels depends on the specific variety of 7.1, but anyway they enhance the effect of volume. On the other hand, full support for this format significantly affects the dimensions, weight and price of the headphones, and content with 7.1 sound is produced much less than 5.1.

— 7.1 (virtual). A “virtual” version of the 7.1 format described above, in which the effect of surround sound is provided primarily through special signal processing, and not due to the presence of separate emitters for each channel. Similar to virtual 5.1, this format of operation somewhat reduces the reliability of the sound, but this difference is often imperceptible, and the headphones themselves turn out to be simpler and more inexpensive. Therefore, most modern 7.1 models support the virtual format of this sound.

— 9.1 (virtual). Further development of the idea of multi-channel sound: 5 channels, as in 5.1 (see above), supplemented by 4 more channels for more accurate localization of audible sound. As in other virtual formats, volume in this case is provided by special processing algorithms.

It is worth remembering that the actual sound will depend not only on the headphones, but also on the signal source: for example, a mono recording even in 9.1 “ears” will not become voluminous.

3D sound. Surround sound with the localization of sound sources in three-dimensional space allows you to deeply plunge into the atmosphere of films or immerse yourself in a virtual game world. The mechanics of spatial 3D-sound provides localization of sound sources around the listener and in the vertical scan plane. Algorithms for implementing 3D sound in headphones differ in terms of software and hardware support, but all of them are aimed at achieving the effect of realism of what is happening. Surround sound has long been the standard for movies, and in recent years, 3D sound has become increasingly common in games and music tracks.

Frequency range

The range of audio frequencies that headphones can reproduce.

The wider this range — the more fully the headphones reproduce the spectrum of sound frequencies, the lower the likelihood that too low or too high frequencies will be inaccessible. However, some nuances should be taken into account here. First of all, we recall that the range of perception of the human ear is on average from 16 Hz to 22 kHz, and for the full picture it is enough that the headphones cover this range. However, modern models can noticeably go beyond these limits: in many devices, the lower threshold does not exceed 15 Hz, or even 10 Hz, and the upper limit can reach 25 kHz, 30 kHz, and even more. Such extensive ranges in themselves do not provide practical advantages, but they usually indicate a high class of headphones, and sometimes they are only given for promotional purposes.

The second important point is that an extensive frequency range in itself is not a guarantee of good sound: the sound quality also depends on a number of parameters, primarily the frequency response of the headphones.

Emitter type

The type of sound emitters installed in the headphones. The type determines the principle of operation of emitters and some features of their design.

Dynamic. The simplest type of emitters operating on the principle of an electromagnet. Due to the combination of low cost with quite decent performance, it is also the most common, especially among entry-level and mid-range headphones. Such an emitter consists of a magnet, a coil placed in its field, and a membrane attached to the coil. When an alternating current (signal) enters the coil, it begins to vibrate, transmitting vibrations to the membrane and creating sound. From an acoustic point of view, the main advantages of dynamic radiators are a wide frequency range and good volume, the disadvantage is a relatively high probability of distortion, especially with a worn membrane.

Reinforcing. A peculiar modification of dynamic emitters (see the relevant paragraph), used mainly in high-end in-ear headphones. The basis of the design of such a radiator is a U-shaped metal plate. One of its ends is fixed motionless, the second, movable, is located between the poles of a permanent magnet, and a coil is wound around it (closer to the crossbar), through which the signal current passes. Vibrating under the action of this current, the movable part of the plate transmits vibrations to a rigid membrane, with which it is connected by a thi...n needle. This technology allows you to achieve good volume and low distortion with a very small size of the earpiece itself. The disadvantages of reinforcing radiators, in addition to high cost, are uneven frequency response and a relatively narrow frequency range. However, in expensive headphones of this type, several emitters can be provided at once, including on a hybrid basis (see relevant paragraph).

Hybrid. Hybrid devices are usually called devices that combine dynamic and reinforcing emitters. See above for more details on these varieties; and their combination is used to combine advantages and compensate for disadvantages. Usually, in such headphones there is only one dynamic emitter, it is responsible for low frequencies, and there can be several reinforcing ones, they share the midrange and high frequencies. This allows you to achieve a more uniform frequency response than in purely armature models, but it significantly affects the price.

Planar. The design of emitters of this type includes two powerful permanent magnets, between which there is a thin film membrane. The shape of the headphones themselves can be either round (orthodynamic emitters) or rectangular (isodynamic). According to the principle of operation, such systems are similar to dynamic ones, with the adjustment for the fact that there is no coil in the design — its role is played by the membrane itself with applied conductive tracks, to which the audio signal is fed. Due to this, distortions associated with the uneven oscillations of the membrane are practically absent; in addition, the sound as a whole is clear and reliable, and the frequency response is uniform. The main disadvantages of planar magnetic headphones are high cost, increased requirements for signal quality, and rather large dimensions. In addition, they are somewhat inferior to dynamic ones in terms of volume and overall frequency range.

Electrostatic. Like planar-magnetic (see the relevant paragraph), such emitters are designed according to the "sandwich" principle. However, the membrane in them is located not between the magnets, but between the metal grids, and is made of a very thin metallized film. An audio signal is connected to such a system in a special way, and the membrane begins to oscillate due to attraction and repulsion from the grids, creating sound. Electrostatic drivers achieve very high sound quality, low distortion, and high fidelity, but they are bulky, complex, and expensive to use. And it's not just the high cost of the headphones themselves — their operation requires additional matching amplifiers with a voltage range of hundreds or even thousands of volts, and such devices cost a lot, and have the appropriate dimensions.

Volume control

The headphones have their own volume control. Such a regulator can be placed both on the wire and on one of the cups (the latter is typical for wireless models). Anyway, this function allows you to easily adjust the volume: for this you do not need to go into the computer settings, press the buttons on the player or smartphone, etc., just use the control at hand. On the other hand, additional equipment complicates and increases the cost of the design, and also increases the likelihood of distortion. In light of the latter, volume control is almost never found in professional headphones.

Codec support

Codecs and additional audio processing technologies supported by Bluetooth headphones (see “Connection”). Initially, sound transmission via Bluetooth involves fairly strong signal compression; This is not critical when transmitting speech, but can greatly spoil the impression when listening to music. To eliminate this shortcoming, various technologies are used, in particular aptX, aptX HD, aptX Low Latency, aptX Adaptive, AAC, LDAC and LHDC. Of course, to use any of the technologies, it must be supported not only by the “ears”, but also by the Bluetooth device with which they are used. Here are the main features of each option:

- aptX. A Bluetooth codec designed to significantly improve the quality of audio transmitted over Bluetooth. According to the creators, it allows you to achieve quality comparable to Audio CD (16-bits/44.1kHz). The benefits of aptX are most noticeable when listening to high-quality content (such as lossless formats), but even on regular MP3 it can provide a noticeable sound improvement.

- aptX HD. Development and improvement of the original aptX, allowing for sound purity comparable to Hi-Res audio (24-bits/48kHz). As in the original, the benefits of aptX HD are noticeable m...ainly on high-quality audio, although this codec will not be out of place for MP3.

- aptX Low Latency. A specific version of aptX described above, designed not so much to improve sound quality, but to reduce delays in signal transmission. Such delays inevitably occur when working via Bluetooth; They are not critical for listening to music, but when watching videos or playing games, there may be a noticeable desynchronization between the image and sound. The aptX LL codec eliminates this phenomenon, reducing latency to 32 ms - such a difference is imperceptible to human perception (although for serious tasks like studio audio work it is still too high). aptX LL support is found mainly in gaming headphones.

- aptX Adaptive. Further development of aptX; actually combines the capabilities of aptX HD and aptX Low Latency, but is not limited to this. One of the main features of this standard is the so-called adaptive bitrate: the codec automatically adjusts the actual data transfer rate based on the characteristics of the broadcast content (music, game audio, voice communications, etc.) and the congestion of the frequencies used. This, in particular, helps reduce energy consumption and increase communication reliability; and special algorithms allow you to broadcast sound quality comparable to aptX HD (24 bits/48 kHz), using much less transmitted data. And the minimum data transfer latency (at the aptX LL level) makes this codec excellent for games and movies.

- A.A.C. A Bluetooth codec used primarily in portable Apple gadgets. In terms of capabilities, it is noticeably inferior to more advanced standards like aptX or LDAC: the sound quality when using AAC is comparable to an average MP3 file. However, for listening to the same MP3s, this is quite enough; the difference becomes noticeable only on more advanced formats. AAC hardware requirements are low, and its support in headphones is inexpensive.

— LDAC. Sony's proprietary Bluetooth codec. It surpasses even aptX HD in terms of bandwidth and potential sound quality, providing performance at the Hi-Res level of 24-bits/96kHz audio; there is even an opinion that this is the maximum quality that it makes sense to provide in wireless headphones - further improvement will simply be imperceptible to the human ear. On the other hand, supporting this standard is not cheap, and there are still quite a few gadgets with such support - these are, in particular, Sony smartphones, as well as mid- and high-end devices running Android 8.0 Oreo and later versions.

- LHDC. LHDC (Low latency High-Definition audio Codec) is a high-definition, low-latency codec developed by the Hi-Res Wireless Audio Alliance and Savitech. In the vast majority of cases, its support is implemented at the hardware level in Huawei and Xiaomi smartphones. The codec is also known as HWA (Hi-Res Wireless Audio). When using LHDC, signal transmission from the phone to the headphones is carried out with a bits rate of up to 900 kbps, a bits depth of up to 24 bits and a sampling frequency of up to 96 kHz. This ensures a stable and reliable communication with reduced latency. The codec is optimally suited for high-end wireless headphones and advanced digital audio formats.

Built-in memory

The amount of built-in memory installed in the headphones.

This feature is found only in models equipped with a built-in player (see above) and capable of playing music completely independently, without connecting to external devices. However, the matter may not be limited to this, there are "ears" with more extensive functions — for example, with the ability to record data from fitness sensors. Anyway, the larger the amount of memory, the more data can be stored in it (for comparison: MP3 compositions rarely “weigh” more than 15 MB, but lossless files have a volume 4-5 times larger). At the same time, this parameter significantly affects the cost, and the built-in drives themselves are more expensive than memory cards in terms of a gigabyte of volume. Therefore, such drives are less common than the alternative — card readers (see below).
Price graph