Укр|Eng|Рус
Ukraine
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Epson EB-535W vs Epson EB-530

Add to comparison
Epson EB-535W
Epson EB-530
Epson EB-535WEpson EB-530
Compare prices 9Compare prices 3
TOP sellers
Main functionpresentationspresentations
Lamp and image
Lamp typeUHEUHE
Lamp modelELPLP87ELPLP87
Service life5000 h5000 h
Service life (energy-saving)10000 h10000 h
Lamp power215 W215 W
Brightness
3400 lm /1900 lm in economy mode/
3200 lm /1800 lm in economy mode/
Dynamic contrast16 000:116 000:1
Colour rendering1 billion colors1 billion colors
Horizontal frequency15 – 92 kHz15 – 92 kHz
Frame rate50 – 85 Hz50 – 85 Hz
Projection system
Technology3LCD3LCD
Size0.59"0.55"
Real resolution1280x800 px1024x768 px
Max. video resolution1600x1200 px
Image format support16:10, 4:3, 16:94:3, 16:9
Projecting
Rear projection
Throw distance, min0.56 m0.55 m
Throw distance, max1.22 m1.22 m
Image size0.99 – 2.95 m0.94 – 2.74 m
Throw ratio0.48:1 – 0.65:10.55:1 – 0.74:1
Digital zoom1.35 x1.35 x
Zoom and focusmanualmanual
Keystone correction (vert), ±15 °15 °
Keystone correction (horizontal), ±15 °15 °
Features
Features
PJ-Link protocol
PJ-Link protocol
Wi-FiWi-Fi readyWi-Fi ready
Hardware
USB 2.011
Number of speakers1
Sound power16 W
Video connectors
VGA /2 inputs and 1 output/
S-Video
composite
VGA /2 inputs and 1 output/
S-Video
composite
HDMI inputs11
HDMI versionv 1.4v 1.4
Audio connectors
microphone input
3.5 mm input (mini-Jack) /2/
3.5 mm output (mini-Jack)
RCA (audio)
microphone input
3.5 mm input (mini-Jack) /2/
3.5 mm output (mini-Jack)
RCA (audio)
Service connectors
COM port (RS-232)
USB (slave)
LAN (RJ-45)
COM port (RS-232)
USB (slave)
LAN (RJ-45)
General
Noise level (nominal)
37 dB /29 dB in economy mode/
37 dB
Noise level (energy-saving / quiet)29 dB29 dB
Power sourcemainsmains
Power consumption
298 W /221 W in economy mode/
298 W /221 W in economy mode/
Size (HxWxD)132.5x344x316 mm94x314.5x344 mm
Weight3.7 kg3.7 kg
Color
Added to E-Catalogjuly 2016october 2015

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Size

The size of the panel/chip affects the depth and final quality of the image. The larger the panel/chip, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Real resolution

The native resolution of the image produced by the projector matrix.

The minimum for modern projectors is actually the VGA standard, which assumes a resolution of 800x600 or close to it. The most limited of modern high-definition standards is HD (720); the classic size of such a frame is 1280x720, but projectors also have other options (up to 1920x720). A more advanced HD format is Full HD (1080), which also has several variations (the most popular is 1920x1080). And among high-end projectors there are models of Quad HD, Ultra HD (4K) and even Ultra HD (8K) standards.

In general, the higher the resolution, the clearer and more detailed image the projector can produce. On the other hand, this indicator directly affects the cost, and all the benefits of high resolution can only be appreciated if the reproduced content also corresponds to it. Note that modern projectors can work with higher resolutions than the “native” ones – for more details, see “Maximum video resolution”.

Max. video resolution

The actual maximum frame resolution that the projector is capable of processing and displaying.

Many models allow project images at a higher resolution than the actual resolution of the projector matrix (see above). For example, a 1920x1080 video can be displayed on a device with a frame size of 1024x768. However, the quality of such an image will be noticeably lower than on a projector, which initially has a resolution of 1920x1080.

The maximum resolution is closely related to both the overall picture quality and the size of the projection screen. The higher the resolution, the sharper the image details become. Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between the Quad HD and 4K formats. A high-resolution picture will be able to show itself on a truly large screen.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classi...c 4:3 and wide-angle 16:9.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.

Image size

Diagonal size of the image projected by the projector. Usually, it is indicated as a range — from the smallest, at the minimum throw distance, to the largest, at the maximum. About throw distances, see above; here it is worth saying that the choice of diagonal size depends both on the distance between the screen and the audience, and on the format of the projector. For example, to watch a video, the best option is the situation when the distance from the viewer to the image corresponds to 3-4 diagonals, and a relatively large picture can be useful for working with presentations. More detailed recommendations for different situations can be found in special sources; here we only recall that the image must fit on the screen used with the projector.

Throw ratio

The projector's throw distance is vital in determining what size projection screen to use and how far away it should be from the projector. Most projectors have a variable throw ratio. In the extreme positions, these are wide-angle mode (smallest value) and telephoto lens mode (largest value). Knowing these values, you will be able to determine the range of throw distances within which the projector must be placed in order for the projected image to match the specified dimensions of the projection screen.

According to these values, you need to check or set the optical zoom. We divide the larger value by the smaller value, and we get a figure, for example 1.33-2.16: 1.

If we want to calculate whether this projector is suitable for a certain image size, we do this: 1.33*3 (image width)=the distance at which the projector should hang.

Number of speakers

The number of built-in speakers provided in the projector.

The presence of speakers in itself allows user to play sound (for example, accompaniment to the displayed video) without speakers and other additional equipment. However the quality of such sound usually turns out to be low; for a clear sound, you still need external sound system. However, in some cases this is quite enough; in addition, there are projectors with advanced built-in speakers.

The number of speakers can be one or two. In the first case, we are talking only about the playback of monophonic sound, without any surround effect. And two speakers already represent a stereo system. The subwoofer is considered a separate function and does not affect the number of speakers in this paragraph.
Price graph
Epson EB-535W often compared