Укр|Eng|Рус
Ukraine
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Logicpower LPE-B-PSW-2300VA Plus 2300 VA
обычный (плоский)
without battery
vs Logicpower LP-UL2200VA 2200 VA

Add to comparison
Logicpower LPE-B-PSW-2300VA Plus 2300 VA обычный (плоский) without battery
Logicpower LP-UL2200VA 2200 VA
Logicpower LPE-B-PSW-2300VA Plus 2300 VA
обычный (плоский)
without battery
Logicpower LP-UL2200VA 2200 VA
Compare prices 40Compare prices 10
TOP sellers
Typesmartsmart
Form factorstandard (flat)standard (Tower)
Switching to battery10 ms10 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range150 – 307 V165 – 285 V
Max. current50 A
Input frequency50/60 Hz50/60 Hz
Bypass (direct connection)is absentis absent
Output
Output voltage1 phase (230V)1 phase (230V)
Max. output power2300 VA2200 VA
Rated output power1600 W1600 W
Voltage control
 /220, 230, 240 В/
Output voltage distortion5 %
Efficiency95 %
Output waveformsinusoid (PSW)sinusoid (PSW)
Output frequency50/60 Hz50/60 Hz
Redundant sockets22
Socket typetype F (Schuko)type F (Schuko)
Reserved C13/C14 connectors1
Terminal blocks
Battery
No included battery
Battery connection voltage24 V36 V
Supplied battery(s) capacity9 Ah
Batteries3
Adjusting the battery charging current
Cold start
External battery connection
LiFePO4 charging support
Protection
Protection
short circuit protection
overload protection
external battery overcharge protection
noise filtering
 
sound alarm
short circuit protection
overload protection
 
noise filtering
data line protection
sound alarm
Fuseauto
Control interfaces
 
 
USB
SmartSlot
General
Screen
Operating temperature0 – 40 °C5 – 40 °C
Noise level40 dB
Dimensions (HxWxD)165x285x295 mm215x144x410 mm
Weight18.4 kg18.5 kg
Added to E-Catalogapril 2023june 2018

Form factor

Normal (Tower). UPS designed for floor mounting or placement on any suitable horizontal surface. This “installation” is extremely simple, and it is suitable even for the most powerful and heaviest devices, and therefore most modern uninterruptible power supplies (of all categories) are made in the usual Tower form factor. They are supposed to be placed vertically.

Rack (in a rack). Models for installation in telecommunication racks. Most of these uninterruptible power supplies belong to the professional equipment segment, designed to power servers and other similar electronics (which are also often mounted in a similar way). The most common rack standard is 19", however there are other options, so it would be a good idea to check the compatibility of the UPS with a specific rack separately. We also note that models of this type are often equipped with legs that allow you to place the device on the floor “sideways” or in a vertical position. Display (if available) in such models may have a rotating design for ease of reading parameters in both positions.

Wall-mounted. Uninterruptible power supplies, primarily designed for wall mounting. Wall hanging may be the best option in tight spaces. However, such an installation is not the only option - many devices can optionally be installed on the floor. Also note that wall-mounted UPSs are often u...sed for heating boilers. The main disadvantage of this form factor is the need to drill into the walls to install an uninterruptible power supply.

- Flat. UPS, structurally assembled in a low, flat housing. As a rule, this form factor allows for several options for installing equipment: the uninterruptible power supply can be installed horizontally or vertically. However, it is the horizontal method of installing the UPS that predominates. In fact, everything depends on the location of the uninterruptible power supply and its dimensions - it would not hurt to clarify this point separately.

Extension cord. Uninterruptible power supplies that resemble an extension cord in appearance. Structurally, such UPSs consist of a set of sockets in one housing, with the sockets located on the top platform of the uninterruptible power supply. Often, the housing of such UPSs is provided with holes or fasteners for wall mounting.

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Max. current

The maximum current drawn by the UPS. In fact, the current reaches its maximum value only when the UPS is operating from the mains with maximum load power and a completely discharged battery. However, when calculating the load on the power grid, this parameter should be taken into account.

Max. output power

The maximum output power supplied by the UPS, in other words, the highest apparent load power allowed for this model.

This indicator is measured in volt-amperes (the general meaning of this unit is the same as that of the watt, and different names are used to separate different types of power). The total power consumption of the load, implied in this case, is the sum of two powers — active and reactive. Active power is actually effective power (it is indicated in watts in the characteristics of electrical appliances). Reactive power is the power wasted by coils and capacitors in AC devices; with numerous coils and/or capacitors, this power can be a fairly significant part of the total energy consumption. Note that for simple tasks, you can use data on effective power (it is often given for UPS — see below); but for accurate electrical calculations it is worth using the full one.

The simplest selection rule for this indicator is: the maximum output power of the UPS in volt-amperes should be at least 1.7 times higher than the total load power in watts. There are also more detailed calculation formulas that take into account the characteristics of different types of load; they can be found in special sources. As for specific values, the most modest modern UPSs give out 700 – 1000 VA, or even less — this is enough to power a PC of average performance; and in the most "heavyweight" mode...ls, this figure can be 8 – 10 kVA and higher.

Voltage control

The ability to change the output voltage of the UPS at the request of the user. Electrical networks in different countries have different voltages: for example, in the post-Soviet space, the standard is 230 V, in European countries — 230 V. Small differences in appearance may not play a significant role, however, voltage mismatch can adversely affect the efficiency and durability of electrical appliances. Voltage regulation allows you to choose the optimal value, thus providing the best conditions for the operation of electronics.

Output voltage distortion

This parameter characterizes the degree of difference between the AC voltage at the output of the UPS and the perfect voltage, the graph of which has the shape of a regular sinusoid. The perfect voltage is so named because it is the most uniform and creates the least unnecessary load on the connected devices. Thus, the distortion of the output voltage is one of the most important parameters that determine the quality of the power received by the load. A distortion level of 0% means that the UPS produces a perfect sine wave, up to 5% — slight sine wave distortion, up to 18% — strong distortion, from 18% to 40% — a trapezoidal signal, more than 40% — a square wave.

Efficiency

Efficiency (coefficient of performance) in the case of a UPS is the ratio of its output power to the power consumed from the network. This is one of the main parameters that determine the overall efficiency of the device: the higher the efficiency, the less energy the UPS wastes (due to heating parts, electromagnetic radiation, etc.). In modern models, the efficiency value can reach 99%.

Reserved C13/C14 connectors

Number of C13/C14 connectors with power reserve provided in the UPS design.

Electrical appliances connected to connectors with a reserve are insured against a power failure in the network - in this case they switch to the battery. The C13/C14 connector itself is also known as a “computer socket”; it supplies the same 230 V as a regular household network, but is not compatible with plugs for traditional sockets, because uses three flat contacts. However, there are adapters between these standards.

At a minimum, the UPS is provided with 1, 2 or 3 C13/C14 connectors for one workstation. In more advanced, so to speak office ones, the number of C13/C14 connectors may be greater - 4 ports, 6 connectors, 8 and even more

Terminal blocks

The terminals are used to connect wires to the UPS — directly, without using any plugs. For models of relatively low power, such a possibility is not needed, but for powerful devices with at least a few kilowatts (used, in particular, for server cabinets), this connection option often turns out to be optimal, or even the only acceptable one. A terminal block is a set of several terminals arranged in a row. Note that the number and purpose of such terminals may be different, this point should be clarified according to the official documentation.
Price graph
Logicpower LPE-B-PSW-2300VA Plus often compared
Logicpower LP-UL2200VA often compared